This study explored Fischer–Tropsch synthesis (FTS) by combining a non-thermal plasma (NTP), generated by an arc discharge reactor at pressures >> 1 MPa, coupled with a mullite-coated 2 wt%-Co/5 wt%-Al2O3 catalyst. The FTS product yields and electrical energy consumption for the pure plasma (no catalyst) and plasma-catalytic FTS processes were compared under the scope of various reactor operating parameters, namely, pressure (0.5 to 10 MPa), current (250 to 450 mA) and inter-electrode gap (0.5 to 2 mm). The major products, obtained in low concentrations for both processes, were gaseous C1–C3 hydrocarbons, synthesised in the order: methane >> ethane > ethylene > propane. The hydrocarbon product yields were observed to increase, while the specific required energy generally decreased with increasing pressure, decreasing current and increasing inter-electrode gap. Plasma-catalysis improved the FTS performance, with the optimum conditions as: (i) 10 MPa at 10 s and 2 MPa at 60 s for the pressure variation study with the longer treatment time producing higher yields; (ii) 250 mA for the current variation study; (iii) 2 mm for the inter-electrode gap variation study. Plasma-catalysis at a gap of 2 mm yielded the highest concentrations of methane (15,202 ppm), ethane (352 ppm), ethylene (121 ppm) and propane (20 ppm), thereby indicating the inter-electrode gap as the most influential parameter.