L-arabitol, a polyol with applications in the food and pharmaceutical industries, is secreted by different yeasts, e.g., Candida spp., Pichia spp., and Debaryomyces spp. The process of its biotechnological production is highly dependent on the physical and chemical conditions of culture. The aim of this study was to use statistical response surface methodology (RSM) to optimize the biotransformation of L-arabinose to arabitol by Candida parapsilosis, a yeast species able to assimilate pentoses. Batch cultures of the yeast were prepared following a Plackett-Burman design for seven variables. Following this, rotation speed, temperature, and L-arabinose concentration were chosen for a central composite design (CCD) experiment, which was carried out to optimize the production L-arabitol. The results showed that the optimal levels for the three factors were: rotation speed 150 rpm, temperature 28°C, and L-arabinose concentration 32.5 g/l. The predicted concentration of arabitol after two days of incubation of C. parapsilosis under the above conditions was 14.3 g/l. The value of R2=0.8323 suggested that this model was well-fitted to the experimental data, and this was confirmed during a verification experiment.