Characterization of organic nickel-(II)-tetraphenyl-21H,23H-porphyrin films as a function of substrate type was performed for energy storage applications and consequently environmental enhancement. Nickel-(II)-tetraphenyl-21H,23H-porphyrin films show an amorphous phase. They have a crystallite size of 8-11 nm. Strain caused a shift of different humps' positions. The measured transmittance has high values within the range of 85-91%, and the absorption coefficient values were included within the high-absorption region. Both optical gap and fundamental gap, refractive index, carrier-concentrationto-effective-mass ratio and lattice dielectric constant were calculated, and they were found to be increased, except refractive index and lattice dielectric constant. The obtained data indicated that nickel-(II)-tetraphenyl-21H,23H-porphyrin films are a candidate for energy storage applications.