BackgroundIdentification of prenatal ventriculoarterial connections in fetuses with conotruncal anomalies (CTA) remains one of the greatest challenges for sonographers performing screening examinations. Herein, we propose a novel protocol of 4D volume analysis that identifies ventriculoarterial connections and evaluate its clinical utility in routine screenings.MethodsTwenty-nine cases of transposition of the great arteries (TGA), 22 cases of double-outlet right ventricle (DORV), 36 cases of tetralogy of Fallot (TOF), 14 cases of truncus arteriosus (TCA), and randomly selected 70 normal fetuses were reviewed in this study. All cases were evaluated using 2D data alone (2D method), post-processing volumes with no exact algorithm (4D-1 method), or with the proposed algorithm (4D-2 method), or using the 2D and 4D data together (combined method). Comparisons were made to evaluate the detection rate of ventriculoarterial connections for these different methods.ResultsDuring 18–28 gestational weeks, the detection rate of 4D-2 modality was satisfactory. The detection rate of the combined method was significantly higher than 2D method in the identification of TGA, TOF, and TCA. The detection rate of 4D-1 method was significantly lower than 4D −2 modality for CTA fetuses. During late pregnancy, the detection rate for both 4D modalities was very low due to the poor quality of the 4D volumes.ConclusionsWe proposed a detailed protocol, which allowed the examiner to identify fetal ventriculoarterial connections by 4D volumes. Inclusion of blood information into the volumes improved diagnosis. Our findings suggest that the incorporation of 4D STIC into routine screenings could improve the detection for TGA, TOF, and TCA.Electronic supplementary materialThe online version of this article (doi:10.1186/s12947-017-0108-5) contains supplementary material, which is available to authorized users.