Hepatitis C virus infection, a major cause of liver disease worldwide, is curable, but currently approved therapies have suboptimal efficacy. Supplementing these therapies with directacting antiviral agents has the potential to considerably improve treatment prospects for hepatitis C virus-infected patients. The critical role played by the viral NS3 protease makes it an attractive target, and despite its shallow, solvent-exposed active site, several potent NS3 protease inhibitors are currently in the clinic. BI 201335, which is progressing through Phase IIb trials, contains a unique C-terminal carboxylic acid that binds noncovalently to the active site and a bromo-quinoline substitution on its proline residue that provides significant potency. In this work we have used stopped flow kinetics, x-ray crystallography, and NMR to characterize these distinctive features. Key findings include: slow association and dissociation rates within a singlestep binding mechanism; the critical involvement of water molecules in acid binding; and protein side chain rearrangements, a bromine-oxygen halogen bond, and profound pK a changes within the catalytic triad associated with binding of the bromoquinoline moiety.Worldwide, 130 -170 million people are chronically infected with hepatitis C virus (HCV) 2 (1). Infection can progress to cirrhosis, which can lead to hepatic decompensation or hepatocellular carcinoma. HCV infection can be cured by administering a combination of pegylated interferon and the nonspecific antiviral drug ribavirin for 24 -48 weeks. Unfortunately, this treatment is only 40 -50% successful in clearing genotype 1 infections, the most common type in most regions of the world (2). Clearly there is considerable need for more efficacious therapies.HCV is a small, positive-strand RNA virus with a 9600-nucleotide genome encoding a 3000-amino acid polyprotein that is subsequently processed into individual proteins by cellular and viral proteases. Four of the five cleavage sites between the NS (nonstructural) proteins are cleaved by the viral NS3 serine protease (EC 3.4.21.98). HCV NS3 is a bifunctional protein comprised of an N-terminal 180-amino acid serine protease domain and a C-terminal 420-amino acid helicase domain (3). The central portion of the 54-amino acid NS4A protein is structurally integrated into the NS3 protease domain (4) and is necessary for full protease activity (5).The search for specific, direct-acting, small molecule inhibitors of HCV replication began shortly after the virus was discovered in 1989 (6); the fact that no such drug has yet made it to the market attests to the challenging nature of this research. Throughout this period, the NS3-NS4A protease has remained a major focus of HCV drug discovery efforts. Beginning with the protease inhibitor BILN 2061 in 2002 (7, 8), a number of specific antivirals have been tested in human trials and have shown very promising results (9). The most advanced compounds in the clinic are NS3-NS4A protease inhibitors, with two, telaprevir and boceprevir, cu...