The analysis of process and equipment operational data in chemical engineering regularly requires a high level of expert knowledge. This work presents a Machine Learning-based approach to evaluate and interpret process data to support robust operation of a thermosiphon reboiler. By applying an outlier detection, potentially interesting and unstable operating conditions can be identified quickly. A multidimensional regression allows to forecast the circulating mass flow. The results obtained fit well into the current state of research and manual evaluation of thermosiphon reboilers.