Copper(II) sulfate-loaded chitosan microparticles were herein prepared using ionic cross-linking with sodium tripolyphosphate (STPP) followed by spray drying. The microencapsulation process was optimal using an inlet temperature of 180 °C, a liquid flow-rate of 290 mL/h, an aspiration rate of 90%, and an atomizing gas flow-rate of 667 nL/h. Chitosan particles containing copper(II) sulfate of approximately 4 µm with a shrunken-type morphology were efficiently attained and, thereafter, fixated on a paper substrate either via cross-linking with STPP or using a chitosan hydrogel. The latter method led to the most promising system since it was performed at milder conditions and the original paper quality was preserved. The developed cellulose substrates were reduced and then exposed to different humidity conditions and characterized using colorimetric measurements in order to ascertain their potential as irreversible indicators for moisture detection. The results showed that the papers coated with the copper(II) sulfate-containing chitosan microparticles were successfully able to detect ambient moisture shown by the color changes of the coatings from dark brown to blue, which can be easily seen with the naked eye. Furthermore, the chitosan microparticles yielded no cytotoxicity in an in vitro cell culture experiment. Therefore, the cellulose substrates herein developed hold great promise in paper packaging as on-package colorimetric indicators for monitoring moisture in real time.