The aim of the present work is to provide information about the migration of phthalate and non‐phthalate plasticizers generally used in flexible polyvinyl chloride (PVC) applications. Plastisols (pastes) were prepared by mixing PVC, plasticizer, and thermal stabilizer. The plasticized PVC (p‐PVC) films are obtained by gelation at 160°C for 15 min. The p‐PVC films were heat treated at 50, 85, 100, 130, and 160°C up to 420 min to follow the mass loss to find out diffusivity of plasticizer out of films into air and to determine related activation energies. The films having di‐octyl terephthalate (DOTP) and di‐isononyl 1,2‐cyclohexanedicarboxylic acid (DINCH) exhibited the lowest mass loss in general, among the phthalate and non‐phthalate plasticizer having p‐PVC films, respectively, as confirmed by FTIR investigation. The same tendency was observed for diffusion coefficients and for the activation energies of migration. The diffusion coefficients were found to be around 3.5 × 10−18–2.1 × 10−17 m2/sec for the studied plasticizers in PVC at 50°C and around 4.0 × 10−15–9.9 × 10−14 m2/sec at 160°C. The activation energies for 85–160°C interval were determined to be between 70 and 153 kJ/mol (0.72–1.58 eV) for the plasticizers used herein those could be treated as a homologous series as deduced from the related compensation factors. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013
Abstract. Hollow fibers formed from water glass and metal salts of IIA(Ca), VIIB(Fe, Co, Ni) and IB(Cu) groups were characterised in this study. Fragile fibres obtained herein broke down into small pieces during isolation and drying. Quantitative information about morphology, chemical composition and surface structure of the fibres were obtained. The diameter and wall thickness of the fibers were around 50 µ and 3 µ. respectively. They had particulate inner and smooth outer surfaces. Fibers had variable composition with metal (II) oxide/SiO 2 ratio in the range 0.31 to 1.02. While group VIIB metal (II) fibres were amorphous, group IIA and IB metal (II) fibres were partially crystalline All the fibres had pores both in micro pore and meso pore region. The B.E.T surface area from N 2 adsorption data was in the range of 10-249 m 3 g −1 and 8-176 m 2 g −1 from Langmuir and B.E.T models respectively.
No abstract
The effect of emulsion process formulation ingredients on the morphology, structure, and properties of polyvinyl chloride (PVC) powder has been considered in this study. PVC powder was extracted with ethanol and films were obtained by solvent casting from tetrahydrofurane. Characterization of powders, films, and ethanol extract was performed through FTIR spectroscopy, DSC, AFM, SEM, EDX analysis, methylene blue, and nitrogen adsorption. PVC powder was composed of spheres of a large particle size range from 10 nm to 20 lm as shown by SEM. The specific surface area of the PVC powder was determined as 16 and 12 m 2 g -1 from methylene blue adsorption at 25°C and from N 2 adsorption at -196°C, respectively. AFM indicated the surface roughness of the films obtained by pressing the particles was 25.9 nm. Density of PVC powder was determined by helium pycnometry as 1.39 g cm -3 . FTIR spectroscopy indicated that it contained carbonyl and carboxylate groups belonging to additives such as surface active agents, plasticizers, and antioxidants used in production of PVC. These additives were 1.6% in mass of PVC as determined by ethanol extraction. EDX analysis showed PVC particles surfaces were coated with carbon-rich materials. The coatings had plasticizer effect since, glass transition temperature was lower than 25°C for PVC powder and it was 80°C for ethanol extracted powders as found by using differential scanning calorimetry. These additives from polymerization process made PVC powder more thermally stable as understood from Metrom PVC thermomat tests as well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.