The fundamental idea behind personalization is to first learn something about the users of a system, and then use this information to support their future activities. When effective algorithms can be developed to learn user preferences, and when the methods for supporting future actions are achievable, personalization can be very effective. However, personalization is difficult in domains where tracking users, learning their preferences, and affecting their future actions is not obvious. In this paper, we introduce a novel method for providing personalized re-ordering of Web search results, based on allowing the searcher to maintain distinct search topics. Search results viewed during the search process are monitored, allowing the system to automatically learn about the users' current interests. The results of an evaluation study show improvements in the precision of the top 10 and 20 documents in the personalized search results after selecting as few as two relevant documents.