Fusion of Information and Communication Technologies (ICT) in traditional grid infrastructure makes it possible to share certain messages and information within the system that leads to optimized use of energy. Furthermore, using Computational Intelligence (CI) in the said domain opens new horizons to preserve electricity as well as the price of consumed electricity effectively. Hence, Energy Management Systems (EMSs) play a vital role in energy economics, consumption efficiency, resourcefulness, grid stability, reliability, and scalability of power systems. The residential sector has its high impact on global energy consumption. Curtailing and shifting load of the residential sector can result in solving major global problems and challenges. Moreover, the residential sector is more flexible in reshaping power consumption patterns. Using Demand Side Management (DSM), end users can manipulate their power consumption patterns such that electricity bills, as well as Peak to Average Ratio (PAR), are reduced. Therefore, it can be stated that Home Energy Management Systems (HEMSs) is an important part of ground-breaking smart grid technology. This article gives an extensive review of DSM, HEMS methodologies, techniques, and formulation of optimization problems. Concluding the existing work in energy management solutions, challenges and issues, and future research directions are also presented.