The millimeter wave (mmWave) based full-dimensional (FD) MIMO communication is one of the promising technology to fulfill the demand of high data rate for the sixth generation (6G) services including 6D hologram, haptic and multi-sensory communications. In order to satisfy the requirements of 6G applications, we investigate a non-uniform rectangular array (NURA) structure with FD-MIMO antenna systems for the multiuser mmWave communications. For the dense scenarios where the number of users to be served is high, we propose user selection algorithms for both digital and hybrid transceiver designs in FD-MIMO with NURA for the multiuser mmWave communications. For the digital transceivers, the users are selected based on their channel correlation considering FD-MIMO with NURA structures. For the hybrid transceivers, sequential user and beam selection is performed using the correlation between the beamspace channels in FD-MIMO with NURA case. The superiority of the NURA compared to uniform antenna structure is shown through the performance evaluations in the multiuser mmWave communications. Besides, the sum data rate results and complexity analysis denote the feasibility of the proposed algorithms compared to the joint user and beam selection schemes.