UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl) General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).
UvA-DARE (Digital AcademicRepository
Disclaimer/Complaints regulationsIf you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. The in vivo biological applications of upconversion nanoparticles (UCNPs) prefer excitation at 700-850 nm, instead of 980 nm, due to the absorption of water. Recent approaches in constructing robust Nd 3+ doped UCNPs with 808 nm excitation properties rely on a thick Nd 3+ sensitized shell.However, for the very important and popular Förster resonance energy transfer (FRET)-based applications, such as photodynamic therapy (PDT) or switchable biosensors, this type of structure has restrictions resulting in a poor energy transfer. In this work, we have designed a NaYF 4 :Yb/Ho@NaYF 4 :Nd@NaYF 4 core-shell-shell nanostructure. We have proven that this optimal structure balances the robustness of the upconversion emission and the FRET efficiency for FRET-based bioapplications. A proof of the concept was demonstrated for photodynamic therapy and simultaneous fluorescence imaging of HeLa cells triggered by 808 nm light, where low heating and a high PDT efficacy were achieved.