2023
DOI: 10.3390/ijgi12040137
|View full text |Cite
|
Sign up to set email alerts
|

Using a Flexible Model to Compare the Efficacy of Geographical and Temporal Contextual Information of Location-Based Social Network Data for Location Prediction

Abstract: In recent years, next location prediction has been of paramount importance for a wide range of location-based social network (LBSN) services. The influence of geographical and temporal contextual information (GTCI) is crucial for analyzing individual behaviors for personalized point-of-interest (POI) recommendations. A number of studies have considered GTCI to improve the performance of POI prediction algorithms, but they have limitations. Moreover, reviewing the related literature revealed that no research ha… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 35 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?