Wireless sensor networks (WSN) have been recently gaining traction for many applications in monitoring and surveillance systems in the physical world specifically in agriculture, healthcare, and smart cities. Many clustering and routing approaches have been introduced to reduce the consumption of energy in WSNs to increase the lifetime of the network. In this study, we propose an improved version of grey wolf optimizer (GWO), a nature-inspired metaheuristic optimization algorithm, to perform cluster head selection and routing in WSN while maximizing the lifetime of WSN. GWO has a propensity to converge to local optima. To overcome this drawback of the conventional GWO, we introduce a balancing factor between the exploration and exploitation phases of the algorithm in addition to a mapping scheme. Comparative simulation and analysis of the proposed algorithm show significant improvement compared to frequently used and well-known approaches namely LEACH and PSO.
In recent years, next location prediction has been of paramount importance for a wide range of location-based social network (LBSN) services. The influence of geographical and temporal contextual information (GTCI) is crucial for analyzing individual behaviors for personalized point-of-interest (POI) recommendations. A number of studies have considered GTCI to improve the performance of POI prediction algorithms, but they have limitations. Moreover, reviewing the related literature revealed that no research has investigated and evaluated the GTCI of LBSN data for location prediction in the form presented in this study. Here, we extended the gated recurrent unit (GRU) model by adding additional attention gates to separately consider GTCI for location prediction based on LBSN data and introduced the extended attention GRU (EAGRU) model. Furthermore, we used the flexibility of the EAGRU architecture and developed it in four states to compare the efficacy of GTCI for location prediction for LBSN users. Real-world, large-scale datasets based on two LBSNs (Gowalla and Foursquare) were used for a complete review. The results revealed that the performance of the EAGRU model was higher than that of competitive baseline methods. In addition, the efficacy of the geographical CI was significantly higher than the temporal CI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.