The impact of environmental and meteorological conditions when dealing with sport performance has been demonstrated by several studies carried out in recent years. Among the meteorological variables with the greatest effect are temperature, humidity, precipitation, and wind direction and speed. This research focused on analyzing and forecasting the wind patterns occurring in Enoshima Bay (Japan). In particular, the objective of this study was to provide support and guidance to sailors in the preparation of the race strategy, thanks to an in-depth knowledge of these meteorological variables. To do this, an innovative method was used. First, through the combined use of Weather Research and Forecasting (WRF) and CALMET models, a simulation was performed, in order to reconstruct an offshore database of a recent 10-year period (2009–2018) over the race area, inside the bay. Subsequently, the verification of hind-cast was performed: the wind data measured at sea were compared with the data extracted from the CALMET database to verify the validity of the model. The verification was performed through three statistical indexes: BIAS, MAE, and PCC. The analysis showed mixed results, depending on the examined pattern, but made it possible to identify the days that best simulated the reality. Then, the wind data from the selected days were summarized and collected in plots, tables, and maps to design a decision support service (DSS), in order to provide athletes with the necessary information in a simple and effective way. In conclusion, we state that the application of this method extends beyond the sports field. Indeed, the study of wind patterns may be necessary in the design of actions to contrast and adapt to climate change, particularly in coastal areas.