We explore the role of lakes in carbon cycling and global climate, examine the mechanisms influencing carbon pools and transformations in lakes, and discuss how the metabolism of carbon in the inland waters is likely to change in response to climate. Furthermore, we project changes as global climate change in the abundance and spatial distribution of lakes in the biosphere, and we revise the estimate for the global extent of carbon transformation in inland waters. This synthesis demonstrates that the global annual emissions of carbon dioxide from inland waters to the atmosphere are similar in magnitude to the carbon dioxide uptake by the oceans and that the global burial of organic carbon in inland water sediments exceeds organic carbon sequestration on the ocean floor. The role of inland waters in global carbon cycling and climate forcing may be changed by human activities, including construction of impoundments, which accumulate large amounts of carbon in sediments and emit large amounts of methane to the atmosphere. Methane emissions are also expected from lakes on melting permafrost. The synthesis presented here indicates that (1) inland waters constitute a significant component of the global carbon cycle, (2) their contribution to this cycle has significantly changed as a result of human activities, and (3) they will continue to change in response to future climate change causing decreased as well as increased abundance of lakes as well as increases in the number of aquatic impoundments.
BACKGROUND Major issues in the implementation of screening for lung cancer by means of low-dose computed tomography (CT) are the definition of a positive result and the management of lung nodules detected on the scans. We conducted a population-based prospective study to determine factors predicting the probability that lung nodules detected on the first screening low-dose CT scans are malignant or will be found to be malignant on follow-up. METHODS We analyzed data from two cohorts of participants undergoing low-dose CT screening. The development data set included participants in the Pan-Canadian Early Detection of Lung Cancer Study (PanCan). The validation data set included participants involved in chemoprevention trials at the British Columbia Cancer Agency (BCCA), sponsored by the U.S. National Cancer Institute. The final outcomes of all nodules of any size that were detected on baseline low-dose CT scans were tracked. Parsimonious and fuller multivariable logistic-regression models were prepared to estimate the probability of lung cancer. RESULTS In the PanCan data set, 1871 persons had 7008 nodules, of which 102 were malignant, and in the BCCA data set, 1090 persons had 5021 nodules, of which 42 were malignant. Among persons with nodules, the rates of cancer in the two data sets were 5.5% and 3.7%, respectively. Predictors of cancer in the model included older age, female sex, family history of lung cancer, emphysema, larger nodule size, location of the nodule in the upper lobe, part-solid nodule type, lower nodule count, and spiculation. Our final parsimonious and full models showed excellent discrimination and calibration, with areas under the receiver-operating-characteristic curve of more than 0.90, even for nodules that were 10 mm or smaller in the validation set. CONCLUSIONS Predictive tools based on patient and nodule characteristics can be used to accurately estimate the probability that lung nodules detected on baseline screening low-dose CT scans are malignant. (Funded by the Terry Fox Research Institute and others; ClinicalTrials.gov number, NCT00751660.)
[1] The emissions of carbon dioxide (CO 2 ) and methane (CH 4 ) from the Petit Saut hydroelectric reservoir (Sinnamary River, French Guiana) to the atmosphere were quantified for 10 years since impounding in 1994. Diffusive emissions from the reservoir surface were computed from direct flux measurements in 1994, 1995, and 2003 and from surface concentrations monitoring. Bubbling emissions, which occur only at water depths lower than 10 m, were interpolated from funnel measurements in 1994, 1997, and 2003. Degassing at the outlet of the dam downstream of the turbines was calculated from the difference in gas concentrations upstream and downstream of the dam and the turbined discharge. Diffusive emissions from the Sinnamary tidal river and estuary were quantified from direct flux measurements in 2003 and concentrations monitoring. Total carbon emissions were 0.37 ± 0.01 Mt yr À1 C (CO 2 emissions, 0.30 ± 0.02; CH 4 emissions, 0.07 ± 0.01) the first 3 years after impounding (1994)(1995)(1996) and then decreased to 0.12 ± 0.01 Mt yr À1 C (CO 2 , 0.10 ± 0.01; CH 4 , 0.016 ± 0.006) since 2000. On average over the 10 years, 61% of the CO 2 emissions occurred by diffusion from the reservoir surface, 31% from the estuary, 7% by degassing at the outlet of the dam, and a negligible fraction by bubbling. CH 4 diffusion and bubbling from the reservoir surface were predominant (40% and 44%, respectively) only the first year after impounding. Since 1995, degassing at an aerating weir downstream of the turbines has become the major pathway for CH 4 emissions, reaching 70% of the total CH 4 flux. In 2003, river carbon inputs were balanced by carbon outputs to the ocean and were about 3 times lower than the atmospheric flux, which suggests that 10 years after impounding, the flooded terrestrial carbon is still the predominant contributor to the gaseous emissions. In 10 years, about 22% of the 10 Mt C flooded was lost to the atmosphere. Our results confirm the significance of greenhouse gas emissions from tropical reservoir but stress the importance of: (1) considering all the gas pathways upstream and downstream of the dams and (2) taking into account the reservoir age when upscaling emissions rates at the global scale.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.