2007
DOI: 10.1007/s10589-006-9009-5
|View full text |Cite
|
Sign up to set email alerts
|

Using a hybrid preconditioner for solving large-scale linear systems arising from interior point methods

Abstract: We devise a hybrid approach for solving linear systems arising from interior point methods applied to linear programming problems. These systems are solved by preconditioned conjugate gradient method that works in two phases. During phase I it uses a kind of incomplete Cholesky preconditioner such that fill-in can be controlled in terms of available memory. As the optimal solution of the problem is approached, the linear systems becomes highly ill-conditioned and the method changes to phase II. In this phase a… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

1
43
0
49

Year Published

2011
2011
2023
2023

Publication Types

Select...
3
3
1

Relationship

0
7

Authors

Journals

citations
Cited by 52 publications
(93 citation statements)
references
References 29 publications
1
43
0
49
Order By: Relevance
“…Os experimentos foram realizados utilizando a versão modificada do PCx [3], nesta versão, o método direto usado para a solução dos sistemas lineares foi substituído por um método iterativo [1].…”
Section: Resultados Numéricosunclassified
“…Os experimentos foram realizados utilizando a versão modificada do PCx [3], nesta versão, o método direto usado para a solução dos sistemas lineares foi substituído por um método iterativo [1].…”
Section: Resultados Numéricosunclassified
“…A predictor direction x k , ỹ k , z k or the affine-scaling directions calculated from the system (4). This system of equations results from the Newton's method applied to the system (3).…”
Section: Primal-dual Interior Points Methodsmentioning
confidence: 99%
“…From tests carried out (Bocanegra et al, 2007), it has been proved that this factorization presents good results in the first iterations of the interior-point method, however it may deteriorates itself in the last ones, as the matrix Q gets very ill-conditioned.…”
Section: Controlled Cholesky Factorizationmentioning
confidence: 99%
See 2 more Smart Citations