Background: The chest radiograph (CXR) is the most frequently performed radiological examination worldwide. The increasing volume of CXRs performed in hospitals causes reporting backlogs and increased waiting times for patients, potentially compromising timely clinical intervention and patient safety. Implementing computer-aided detection (CAD) artificial intelligence (AI) algorithms capable of accurate and rapid CXR reporting could help address such limitations. A novel use for AI reporting is the classification of CXRs as ‘abnormal’ or ‘normal’. This classification could help optimize resource allocation and aid radiologists in managing their time efficiently. Methods: qXR is a CE-marked computer-aided detection (CAD) software trained on over 4.4 million CXRs. In this retrospective cross-sectional pre-deployment study, we evaluated the performance of qXR in stratifying normal and abnormal CXRs. We analyzed 1040 CXRs from various referral sources, including general practices (GP), Accident and Emergency (A&E) departments, and inpatient (IP) and outpatient (OP) settings at East Kent Hospitals University NHS Foundation Trust. The ground truth for the CXRs was established by assessing the agreement between two senior radiologists. Results: The CAD software had a sensitivity of 99.7% and a specificity of 67.4%. The sub-group analysis showed no statistically significant difference in performance across healthcare settings, age, gender, and X-ray manufacturer. Conclusions: The study showed that qXR can accurately stratify CXRs as normal versus abnormal, potentially reducing reporting backlogs and resulting in early patient intervention, which may result in better patient outcomes.