Background
Deep learning-based radiological image analysis could facilitate use of chest x-rays as a triaging tool for COVID-19 diagnosis in resource-limited settings. This study sought to determine whether a modified commercially available deep learning algorithm (M-qXR) could risk stratify patients with suspected COVID-19 infections.
Methods
A dual track clinical validation study was designed to assess the clinical accuracy of M-qXR. The algorithm evaluated all Chest-X-rays (CXRs) performed during the study period for abnormal findings and assigned a COVID-19 risk score. Four independent radiologists served as radiological ground truth. The M-qXR algorithm output was compared against radiological ground truth and summary statistics for prediction accuracy were calculated. In addition, patients who underwent both PCR testing and CXR for suspected COVID-19 infection were included in a co-occurrence matrix to assess the sensitivity and specificity of the M-qXR algorithm.
Results
625 CXRs were included in the clinical validation study. 98% of total interpretations made by M-qXR agreed with ground truth (p = 0.25). M-qXR correctly identified the presence or absence of pulmonary opacities in 94% of CXR interpretations. M-qXR's sensitivity, specificity, PPV, and NPV for detecting pulmonary opacities were 94%, 95%, 99%, and 88% respectively. M-qXR correctly identified the presence or absence of pulmonary consolidation in 88% of CXR interpretations (p = 0.48). M-qXR's sensitivity, specificity, PPV, and NPV for detecting pulmonary consolidation were 91%, 84%, 89%, and 86% respectively. Furthermore, 113 PCR-confirmed COVID-19 cases were used to create a co-occurrence matrix between M-qXR's COVID-19 risk score and COVID-19 PCR test results. The PPV and NPV of a medium to high COVID-19 risk score assigned by M-qXR yielding a positive COVID-19 PCR test result was estimated to be 89.7% and 80.4% respectively.
Conclusion
M-qXR was found to have comparable accuracy to radiological ground truth in detecting radiographic abnormalities on CXR suggestive of COVID-19.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.