“…Conventional GLM or GLMM Poisson (Arjkumpa et al., 2020 ; Kerfua et al., 2018 ), negative binomial (Gunasekera et al., 2017 ), linear (Aman et al., 2020 ; Gallego et al., 2007 ; Jemberu et al., 2016 ; Perez et al., 2011 ; Woldemariyam et al., 2022 ) or logistic regression (Jemberu et al., 2016 ) models were used to explore or test hypothesis related to temporal trends. Other studies resorted to Bayesian approaches (Branscum et al., 2008 ; Choi et al., 2012 ; Gunasekera et al., 2022 ; Richards et al., 2014 ), additive models (Aman et al., 2020 ), spectral analysis (Perez et al., 2011 ), locally weighted regression (Sanchez‐Vazquez et al., 2019 ), normalized temporal trends (Madin, 2011 ), time series (Gallego et al., 2007 ), regression tree models (Souley Kouato et al., 2018 ) and models fitted to inverted correlograms (Gilbert et al., 2005 ) to analyse temporal data. Moreover, 13 studies formally analysed FMD seasonality through the calculation of seasonal indexes (Abdrakhmanov et al., 2018 ; Gallego et al., 2007 ; Perez et al., 2011 ), seasonal decomposition (Madin, 2011 ; Woldemariyam et al., 2022 ), randomness tests (Aman et al., 2020 ; Gallego et al., 2007 ; Jemberu et al., 2016 ) or by fitting frequentist or Bayesian models to temporal data (Choi et al., 2012 ; Guerrini et al., 2019 ; Jafarzadeh et al., 2014 ; Kerfua et al., 2018 ; Rahman et al., 2020 ).…”