2014
DOI: 10.3384/ecp14096437
|View full text |Cite
|
Sign up to set email alerts
|

Using Fault Augmented Modelica Models for Diagnostics

Abstract: We propose a model-based diagnosis framework in which Modelica models of faulted behavior are used in combination with a Bayesian approach. The fault augmented models are automatically generated through a process developed as part of our Fault Augmented Model Extension (FAME) work. Fault diagnosis using a Bayesian approach is based on computing a set of probability density functions, a process that is usually intractable for any reasonably complex system. We use Approximate Bayesian Computation (ABC) to bound … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
11
0
1

Year Published

2016
2016
2024
2024

Publication Types

Select...
4
3
2

Relationship

0
9

Authors

Journals

citations
Cited by 22 publications
(12 citation statements)
references
References 11 publications
0
11
0
1
Order By: Relevance
“…fmdtools has additionally since expanded in scope to include not just fault propagation tools but the necessary analysis and visualization tools needed to interpret Toolkit Causality Representation Model Format(s) Availability Use in design HiP-Hops (Papadopoulos & McDermid, 1999) Dynamic simulation with failure logic Simulink, Simula-tionX, AADL, etc. Commercial Functional Hazard Assessment, Design Optimization (Papadopoulos et al, 2011) Rodon (Bunus et al, 2009) Behavioral constraint network with failure logic Modelica-like Rodelica model Commercial Model-based engineering process (Lunde et al, 2006) Modelica fault libraries (van der Linden, 2014;Minhas et al, 2014;Gundermann et al, 2019) Undirected behavioral/failure logic Modelica Open Source Design exploration (Lattmann et al, 2014) OpenErrorPro (Morozov et al, 2019) Probabilistic markov chain Simulink, Stateflow, UML, SysML, AADL Open Source Model-based reliable system design (Morozov et al, 2018) SHyFTOO (Chiacchio et al, 2020) Dynamic simulation with probabilistic hybrid fault tree Simulink, MAT-LAB code Open Source Model-based design (Chiacchio et al, 2019) OpenCossan (Patelli et al, 2018) Probabalistic semi-markov transitions and/or external simulation…”
Section: Related Workmentioning
confidence: 99%
“…fmdtools has additionally since expanded in scope to include not just fault propagation tools but the necessary analysis and visualization tools needed to interpret Toolkit Causality Representation Model Format(s) Availability Use in design HiP-Hops (Papadopoulos & McDermid, 1999) Dynamic simulation with failure logic Simulink, Simula-tionX, AADL, etc. Commercial Functional Hazard Assessment, Design Optimization (Papadopoulos et al, 2011) Rodon (Bunus et al, 2009) Behavioral constraint network with failure logic Modelica-like Rodelica model Commercial Model-based engineering process (Lunde et al, 2006) Modelica fault libraries (van der Linden, 2014;Minhas et al, 2014;Gundermann et al, 2019) Undirected behavioral/failure logic Modelica Open Source Design exploration (Lattmann et al, 2014) OpenErrorPro (Morozov et al, 2019) Probabilistic markov chain Simulink, Stateflow, UML, SysML, AADL Open Source Model-based reliable system design (Morozov et al, 2018) SHyFTOO (Chiacchio et al, 2020) Dynamic simulation with probabilistic hybrid fault tree Simulink, MAT-LAB code Open Source Model-based design (Chiacchio et al, 2019) OpenCossan (Patelli et al, 2018) Probabalistic semi-markov transitions and/or external simulation…”
Section: Related Workmentioning
confidence: 99%
“…Das wirtschaftliche und gesellschaftliche Potenzial für solche neuen Ansätze ist gewaltig (Frauhofer IAIS 2013). Bisher stoßen datengetriebene Ansätze trotzdem auf viel Skepsis, in den meisten Projekten zur Optimierung und Diagnose werden physikalische und Verhaltensmodelle verwendet, die von Hand erstellt worden sind (Minhas et al 2014). Bei einem Antrieb wird dieser modelliert; bei einem Reaktor werden dessen chemische und physikalische Prozesse modelliert.…”
Section: Motivationunclassified
“…This approach uses a separate behavioral model simulation to determine fault propagation and fault effect. Typically, the modeling language Modelica is applied to simulate failure scenarios [48,49], however, system models cannot be automatically constructed from a description of the functional structure of a system and therefore it may not be useful in FFIP where multiple designs are investigated.…”
Section: Failure Analysis and Functional Modelsmentioning
confidence: 99%