2008
DOI: 10.1037/0012-1649.44.2.395
|View full text |Cite
|
Sign up to set email alerts
|

Using full matching to estimate causal effects in nonexperimental studies: Examining the relationship between adolescent marijuana use and adult outcomes.

Abstract: Matching methods such as nearest neighbor propensity score matching are increasingly popular techniques for controlling confounding in nonexperimental studies. However, simple k:1 matching methods, which select k well-matched comparison individuals for each treated individual, are sometimes criticized for being overly restrictive and discarding data (the unmatched comparison individuals). The authors illustrate the use of a more flexible method called full matching. Full matching makes use of all individuals i… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

4
211
0
2

Year Published

2012
2012
2023
2023

Publication Types

Select...
9

Relationship

2
7

Authors

Journals

citations
Cited by 246 publications
(217 citation statements)
references
References 61 publications
(126 reference statements)
4
211
0
2
Order By: Relevance
“…1,56,57 Instead, Woodlawn men have rates of depression (16.2 %) only slightly lower than Woodlawn women (18.8 %), demonstrating the magnitude of the problem of depression for African American urban men. Woodlawn men also have high rates of crime, homelessness, substance use, and unemployment, [58][59][60][61] all of which have been found to be associated with depression.…”
Section: Discussionmentioning
confidence: 99%
“…1,56,57 Instead, Woodlawn men have rates of depression (16.2 %) only slightly lower than Woodlawn women (18.8 %), demonstrating the magnitude of the problem of depression for African American urban men. Woodlawn men also have high rates of crime, homelessness, substance use, and unemployment, [58][59][60][61] all of which have been found to be associated with depression.…”
Section: Discussionmentioning
confidence: 99%
“…Si la razón de tratados y controles dentro de cada bloque está muy desbalanceada, dicho problema puede introducir sesgo en las estimaciones (Stuart y Green 2008). Tal como sugiere Hansen (2004), Full Matching permite solucionar este problema a través de la imposición de restricciones al número de tratados y controles que habrá dentro de cada bloque.…”
Section: Técnica Para Balancear Covariables: Full Matching Y Análunclassified
“…Los análisis de balance fueron realizados con el paquete de R RItools (Bowers et al 2016 Las diferencias estandarizadas complementan al test ómnibus en la medida que ellas permiten evaluar el balance para cada covariable por separado. Diferencias menores de 0,25 en términos absolutos son habitualmente consideradas como un balance aceptable (Stuart y Green 2008). Los resultados de la Tabla 1 en la condición pre-matching indican que el balance sería aceptable para la mayoría de las covariables salvo el género, el indicador de si el encuestado llegó en 2011 o después a Chaitén y, sobre todo, las variables de estatus socioeconómico (ingreso y nivel educacional).…”
unclassified
“…48 Applications of propensity score methods in examining longitudinal effects in observational research include, but are not limited to, studies that looked at developmental trajectory and substance use. 39,[49][50][51][52] The propensity score matching method was used to account for early-life or childhood covariates in relation to adolescent smoking and to obtain a matched sample. For propensity score matching, all analyses were conducted with STATA statistical software.…”
Section: Analysis Propensity Score Matchingmentioning
confidence: 99%