Formation of new roads generally brings about adverse impact on the environment, and in the case of hill roads, the impact is diverse and effective measures are required to mitigate it. The common problems in hill road formation are tree cutting, destruction of canopies, change in land use pattern, soil erosion, slope instability, induced landslides, invasion of foreign species, and so on. Removal of trees and vegetations causes rapid soil erosion, landslides, and invasion of foreign species posing danger to the survival of weak native species. Dumping of surplus earth materials on the valley side poses a significant threat to the environment as it would cause induced landslides. Using the cut earth for filling in road formation and dumping, the surplus cut earth in safe locations will reduce environmental degradation considerably. Conventionally, hill road alignments are finalized using traditional survey methods using ghat tracer, compass, and leveling surveys which require enormous complicated field and office works. Any revision to reduce the quantum of earthwork is difficult in this method due to its complex nature. In the present study at Palamalai Hills, South India, an alignment for a length of 7.95 km was prepared by traditional methods using ghat tracer and total station instruments for survey works. The earthwork quantities were ascertained from the longitudinal profile of the alignment. A GPS survey was also conducted along the alignment to examine its utility in alignment modification. To modify the stretches, where the earthwork cutting and filling are above normal and unbalanced and result in surplus earth, repeated GPS surveys were conducted along different paths to optimize the earthwork. The earthwork quantities of the original alignment were analyzed, and its correlation with environmental effect and the usefulness of the GPS survey in this task are presented in this paper.