Transportation maps between probability measures are critical objects in numerous areas of mathematics and applications such as PDE, fluid mechanics, geometry, machine learning, computer science, and economics. Given a pair of source and target measures, one searches for a map that has suitable properties and transports the source measure to the target one. Here, we study maps that possess the no-collision property; that is, particles simultaneously traveling from sources to targets in a unit time with uniform velocities do not collide. These maps are particularly relevant for applications in swarm control problems. We characterize these no-collision maps in terms of half-space preserving property and establish a direct connection between these maps and binary-space-partitioning (BSP) tree structures. Based on this characterization, we provide explicit BSP algorithms, of cost O(n log n), to construct no-collision maps. Moreover, interpreting these maps as approximations of optimal transportation maps, we find that they succeed in computing nearly optimal maps for q-Wasserstein metric (q = 1, 2). In some cases, our maps yield costs that are just a few percent off from being optimal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.