2019
DOI: 10.25126/jitecs.20194195
|View full text |Cite
|
Sign up to set email alerts
|

Using Guided Initial Chromosome of Genetic Algorithm for Scheduling Production-Distribution System

Abstract: Production and distribution system in a company should be managed carefully. Delay in product delivery not only results in a late penalty due to customer dissatisfaction or breach of contract, but also causes a supply chain failure. Of course, all these impacts will also reduce the reputation of a company. Scheduling integrated production-distribution is classified as NP-Hard problem. Genetic algorithm can be used to solve complex problem. In this paper, genetic algorithm is used for scheduling production-dist… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
2
0
1

Year Published

2019
2019
2023
2023

Publication Types

Select...
4

Relationship

1
3

Authors

Journals

citations
Cited by 4 publications
(3 citation statements)
references
References 9 publications
0
2
0
1
Order By: Relevance
“…Kegunaan lain dari algoritma yang dipaparkan dalam paper ini adalah bahwa berbagai algoritma tersebut dapat digunakan untuk mendapatkan nilai objektif bila persoalan penjadwalan perkuliahan ini diselesaikan dengan menggunakan pendekatan meta-heuristik [9] [10] atau berbasis riset operasi [11] [12]. Metode meta-heuristik banyak digunakan untuk berbagai masalah penjadwalan karena kemampuanya menanganai constraint yang kompleks [13] [14]. Misalnya untuk mengetahui berapa banyak pelanggaran constraint ruang yang terjadi pada sebuah solusi yang diperoleh dengan algoritma genetika atau simulated annealing.…”
Section: Pendahuluanunclassified
“…Kegunaan lain dari algoritma yang dipaparkan dalam paper ini adalah bahwa berbagai algoritma tersebut dapat digunakan untuk mendapatkan nilai objektif bila persoalan penjadwalan perkuliahan ini diselesaikan dengan menggunakan pendekatan meta-heuristik [9] [10] atau berbasis riset operasi [11] [12]. Metode meta-heuristik banyak digunakan untuk berbagai masalah penjadwalan karena kemampuanya menanganai constraint yang kompleks [13] [14]. Misalnya untuk mengetahui berapa banyak pelanggaran constraint ruang yang terjadi pada sebuah solusi yang diperoleh dengan algoritma genetika atau simulated annealing.…”
Section: Pendahuluanunclassified
“…Based on the characteristics of these genetic algorithms, the scope is expanding, and research on the optimization and improvement of genetic algorithms is becoming more sophisticated. In recent years, production planning based on genetic algorithms has been analyzed in the literature using various software [44][45][46][47][48][49][50][51][52][53][54]. Our article contributes to the existing literature in that we did not use existing software.…”
Section: Dao and Marianmentioning
confidence: 99%
“…A permutation chromosome representation employed to solve multiple sequences of alignment of bioinformatics [8]. NSGA-II with a new problem-specific chromosome makes significant performance improvement in oil refinery scheduling [9] and production-distribution optimization [10]. Better performance also produced by problem-specific chromosome on the base station placement in cellular networks [11].…”
Section: Introductionmentioning
confidence: 99%