Data mining and analysis are critical for preventing or mitigating natural hazards. However, data availability in natural hazard analysis is experiencing unprecedented challenges due to economic, technical, and environmental constraints. Recently, generative deep learning has become an increasingly attractive solution to these challenges, which can augment, impute, or synthesize data based on these learned complex, high-dimensional probability distributions of data. Over the last several years, much research has demonstrated the remarkable capabilities of generative deep learning for addressing data-related problems in natural hazards analysis. Data processed by deep generative models can be utilized to describe the evolution or occurrence of natural hazards and contribute to subsequent natural hazard modeling. Here we present a comprehensive review concerning generative deep learning for data generation in natural hazard analysis. (1) We summarized the limitations associated with data availability in natural hazards analysis and identified the fundamental motivations for employing generative deep learning as a critical response to these challenges. (2) We discuss several deep generative models that have been applied to overcome the problems caused by limited data availability in natural hazards analysis. (3) We analyze advances in utilizing generative deep learning for data generation in natural hazard analysis. (4) We discuss challenges associated with leveraging generative deep learning in natural hazard analysis. (5) We explore further opportunities for leveraging generative deep learning in natural hazard analysis. This comprehensive review provides a detailed roadmap for scholars interested in applying generative models for data generation in natural hazard analysis.