Bupivacaine ranks as the most potent and efficient drug among class I local anesthetics, but its high potential for toxic reactions severely limits its clinical use. Although bupivacaine-induced toxicity is mainly caused by substantial blockade of voltage-gated sodium channels (VGSCs), how these hydrophobic molecules interact with the receptor sites to which they bind remains unclear. Na v 1.5 is the dominant isoform of VGSCs expressed in cardiac myocytes, and its dysfunction may be the cause of bupivacainetriggered arrhythmia. Here, we investigated the effect of bupivacaine on Na v 1.5 within the clinical concentration range. The electrophysiological measurements on Na v 1.5 expressed in Xenopus oocytes showed that bupivacaine induced a voltageand concentration-dependent blockade on the peak of I Na and the half-maximal inhibitory dose was 4.51 μmol/L. Consistent with other local anesthetics, bupivacaine also induced a use-dependent blockade on Na v 1.5 currents. The underlying mechanisms of this blockade may contribute to the fact that bupivacaine not only dose-dependently affected the gating kinetics of Na v 1.5 but also accelerated the development of its open-state slow inactivation. These results extend our knowledge of the action of bupivacaine on cardiac sodium channels, and therefore contribute to the safer and more efficient clinical use of bupivacaine.