Sodium-gated ion channels open and close in response to the flow of ions. Here, McCusker et al. report the open structure of a sodium-gated ion channel pore from a bacterial homologue, and show, by comparison with the closed structure, that the movement of a C-terminal helix is sufficient to open the channel.
Clostridium perfringens alpha-toxin is the key virulence determinant in gas gangrene and has also been implicated in the pathogenesis of sudden death syndrome in young animals. The toxin is a 370-residue, zinc metalloenzyme that has phospholipase C activity, and can bind to membranes in the presence of calcium. The crystal structure of the enzyme reveals a two-domain protein. The N-terminal domain shows an anticipated structural similarity to Bacillus cereus phosphatidylcholine-specific phospholipase C (PC-PLC). The C-terminal domain shows a strong structural analogy to eukaryotic calcium-binding C2 domains. We believe this is the first example of such a domain in prokaryotes. This type of domain has been found to act as a phospholipid and/or calcium-binding domain in intracellular second messenger proteins and, interestingly, these pathways are perturbed in cells treated with alpha-toxin. Finally, a possible mechanism for alpha-toxin attack on membrane-packed phospholipid is described, which rationalizes its toxicity when compared to other, non-haemolytic, but homologous phospholipases C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.