Unbiased (biased) illuminations are performed at low temperatures on dopant-free twodimensional electron gases (2DEGs) at different depths in undoped GaAs/AlGaAs, while gates are kept grounded (held at a finite voltage, either positive or negative). Unbiased illuminations in 2DEGs located more than 70 nm away from the surface result in a gain in mobility (for the same electron density), driven by the reduction of background impurities. In 2DEGs closer to the surface, unbiased illuminations result in a mobility loss, driven by an increase in surface charge density. Biased illuminations performed with positive applied gate voltages result in a mobility gain, whereas those performed with negative applied voltages result in a mobility loss. The magnitude of the mobility gain (loss) weakens with 2DEG depth, and is likely driven by a reduction (increase) in surface charge density. Experimental results are modeled with Boltzmann transport theory, and possible mechanisms are discussed.