Using Multiple Imputation and Inverse Probability Weighting to Adjust for Missing Data in HIV Prevalence Estimates: A Cross-Sectional Study in Mwanza, North Western Tanzania.
Abstract:Background Population surveys and demographic studies are the gold standard for estimating HIV prevalence. However, non-response in these surveys is of major concern especially if it is not random and complete case analysis becomes an inappropriate method to analyse the data. Therefore, a comprehensive analysis that will account for the missing data must be used to obtain unbiased HIV prevalence estimates. MethodsSerological samples were collected from participants who were resident in a Demographic Surveillan… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.