2016
DOI: 10.1016/j.jbi.2016.05.005
|View full text |Cite
|
Sign up to set email alerts
|

Using online social networks to track a pandemic: A systematic review

Abstract: OSN data contain significant information that can be used to track a pandemic. Different from traditional surveys and clinical reports, in which the data collection process is time consuming at costly rates, OSN data can be collected almost in real time at a cheaper cost. Additionally, the geographical and temporal information can provide exploratory analysis of spatiotemporal dynamics of infectious disease spread. However, on one hand, an OSN-based surveillance system requires comprehensive adoption, enhanced… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

1
108
0
5

Year Published

2016
2016
2022
2022

Publication Types

Select...
4
4
1

Relationship

1
8

Authors

Journals

citations
Cited by 151 publications
(114 citation statements)
references
References 40 publications
(64 reference statements)
1
108
0
5
Order By: Relevance
“…Desgraciadamente no detectaría los portadores asintomáticos. Sin embargo, creemos que nuestro enfoque es nuevo, Page 3 of 6 J o u r n a l P r e -p r o o f con bajo coste y rápidamente aplicable para detectar el porcentaje de población afectada cuando un brote de un agente infeccioso desborda los sistemas existentes o no se detecta mediante los sistemas convencionales de alerta temprana como sucedió con la COVID-19 [10].…”
Section: Autoresunclassified
“…Desgraciadamente no detectaría los portadores asintomáticos. Sin embargo, creemos que nuestro enfoque es nuevo, Page 3 of 6 J o u r n a l P r e -p r o o f con bajo coste y rápidamente aplicable para detectar el porcentaje de población afectada cuando un brote de un agente infeccioso desborda los sistemas existentes o no se detecta mediante los sistemas convencionales de alerta temprana como sucedió con la COVID-19 [10].…”
Section: Autoresunclassified
“…Related works of systems proposed for epidemics of seasonal influenza can be seen in the Google Flu Trends system [19], MappyHealth application [67], Tracking Flu Infections on Twitter [68], detecting influenza epidemics by analyzing Twitter messages [69], HealthTweets.org: a Platform for Public Health Surveillance Using Twitter [45], and the ARGO system for monitoring dengue fever epidemics [49]. For further reading on these types of systems, a systematic review of the literature conducted on proposed systems published between 2004 and 2015 that detect and track a pandemic using online social networks was published in 2016 by [70]. In addition, the most recent review was presented by Pollett et al [71] in 2017 for evaluating the internet-based biosurveillance performance of diseases caused by bacteria, parasites and viruses.…”
Section: Latest Disease Outbreak Surveillance Systemsmentioning
confidence: 99%
“…, is associated an adjacency matrix = { }. Such a network can be represented by the set layer = [A [1] , A [2] , A [3] … … … . .…”
Section: Definition 2: Aggregating Into Multi-layer Networkmentioning
confidence: 99%
“…OSNs' lens provide researchers and scientists with exceptional prospects to understand individuals at scale and to analyze human behavioral patterns, otherwise impossible [1]. The data generated by OSNs users have been utilized in various applications [2][3][4]. The huge rise of OSNs driven by communication technology revolution has intensely renovated the platform of human interactions.…”
Section: Introductionmentioning
confidence: 99%