OSN data contain significant information that can be used to track a pandemic. Different from traditional surveys and clinical reports, in which the data collection process is time consuming at costly rates, OSN data can be collected almost in real time at a cheaper cost. Additionally, the geographical and temporal information can provide exploratory analysis of spatiotemporal dynamics of infectious disease spread. However, on one hand, an OSN-based surveillance system requires comprehensive adoption, enhanced geographical identification system, and advanced algorithms and computational linguistics to eliminate its limitations and challenges. On the other hand, OSN is probably to never replace traditional surveillance, but it can offer complementary data that can work best when integrated with traditional data.
Online social networks (OSNs) are structures that help users to interact, exchange, and propagate new ideas. The identification of the influential users in OSNs is a significant process for accelerating the propagation of information that includes marketing applications or hindering the dissemination of unwanted contents, such as viruses, negative online behaviors, and rumors. This article presents a detailed survey of influential users’ identification algorithms and their performance evaluation approaches in OSNs. The survey covers recent techniques, applications, and open research issues on analysis of OSN connections for identification of influential users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.