Microtubule (MT) dynamics quantification includes modeling of elongation, rapid shortening, and pauses. It indicates the effect of the cancer treatment drug paclitaxel because the drug causes MTs to bundle, which will in turn inhibit successful mitosis of cancerous cells. Thus, automatic MT dynamics analysis has been researched intensely because it allows for faster evaluation of potential cancer treatments and better understanding of drug effects on a cell. However, most current literatures still use manual initialization. In this work, we propose an automatic initialization algorithm that selects isolated and active tips for tracking. We use a Gaussian match filter to enhance the MT structures, and a novel technique called Pixel Nucleus Analysis (PNA) for isolated MT tip detection. To find dynamic tips, we applied a masked FFT in the temporal domain followed by K-means clustering. To evaluate the selected tips, we used a low level tip linking algorithm, and show the results of applying the algorithm to a model image and five MCF-7 breast cancer cell line images captured using fluorescent confocal microscopy. Finally, we compare tip selection criteria with existing automatic selection algorithms. We conclude that the proposed analysis is an effective technique based on three criteria which include outer region selection, separation, and MT dynamics.