Deubiquitinase A (DUBA) belongs to the ovarian tumor family of deubiquitinating enzymes and was initially identified as a negative regulator of type I interferons, whose overproduction has been linked to autoimmune diseases. The deubiquitinating activity of DUBA is positively regulated by phosphorylation at a single serine residue, S177, which results in minimal structural changes. We have previously shown that phosphorylation induces a two-state conformational equilibrium observed only in the active form of DUBA, highlighting the functional importance of DUBA dynamics. Here, we report the conformational dynamics of DUBA on the microsecond-to-millisecond time scales characterized by nuclear magnetic resonance relaxation dispersion experiments. We found that motions on these time scales are highly synchronized in the phosphorylated and nonphosphorylated DUBA. Despite the overall similarity of these two forms, different dynamic properties were observed in helix α1 and the neighboring regions, including residue S177, which likely contribute to the activation of DUBA by phosphorylation. Moreover, our data suggest that transient unfolding of helix α6 drives the global conformational process and that mutations can be introduced to modulate this process, which provides a basis for future studies to define the exact functional roles of motions in DUBA activation and substrate specificity.