2015
DOI: 10.1007/s11629-014-3134-x
|View full text |Cite
|
Sign up to set email alerts
|

Using statistical learning algorithms in regional landslide susceptibility zonation with limited landslide field data

Abstract: LSZ) is alw field data, large mount coincide. St to be super their data evaluate ho on regional on three Regression and Suppor landslide pr as a study selected as i maps are ev (LDA), rece and Kappa algorithm o varying the proven to b algorithm a landslide si

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
6
0
2

Year Published

2016
2016
2024
2024

Publication Types

Select...
6
3

Relationship

0
9

Authors

Journals

citations
Cited by 20 publications
(8 citation statements)
references
References 49 publications
0
6
0
2
Order By: Relevance
“…Furthermore, some scholars have also analyzed and compared landslide susceptibility through qualitative and quantitative aspects in Shaanxi Province, such as FR-AHP [36], certainty factor (CF), and index of entropy (IOE) [37] model. In addition, compared with other models, SVM model shows better prediction results [38]. However, there is no further study on quantitative analysis.…”
Section: Introductionmentioning
confidence: 95%
“…Furthermore, some scholars have also analyzed and compared landslide susceptibility through qualitative and quantitative aspects in Shaanxi Province, such as FR-AHP [36], certainty factor (CF), and index of entropy (IOE) [37] model. In addition, compared with other models, SVM model shows better prediction results [38]. However, there is no further study on quantitative analysis.…”
Section: Introductionmentioning
confidence: 95%
“…In this paper, the relationship between the occurrence of landslides (the dependent variable) and multiple hazard factors is described (Menard, 1995;Atkinson and Massari, 1998). The independent variable in this model can be continuous or discrete, and it does not need to satisfy a normal frequency distribution (Bai et al, 2015;Wang et al, 2015). The expression of the logistic regression core function is…”
Section: Logistic Regression Modelmentioning
confidence: 99%
“…También se ha geolocalizado la parte superior y no movilizada del escarpe principal, verificando y corrigiendo las coordenadas de cada punto con la aplicación de Google Earth. La localización de estos puntos en las capas temáticas espaciales ha permitido conocer las características del ámbito anteriores al deslizamiento (Wang et al, 2015). Posteriormente, se ha creado una capa de puntos de distribución espacial con la ayuda del software ArcGIS 10.0.…”
Section: Inventario De Deslizamientosunclassified
“…Además, con el fin de minimizar el impacto del tamaño de los deslizamientos (Dai y Lee, 2002), se ha excluido un buffer de 30 m alrededor de cada punto de inestabilidad para evitar que los puntos estables caigan dentro de las áreas deslizadas. Así, se han considerado aquellos lugares sin ningún deslizamiento de tierra inventariado como espacios libres de inestabilidades (Nefeslioglu et al, 2008;Pourghasemi et al, 2013;Wang et al, 2015).…”
Section: Inventario De Deslizamientosunclassified