BackgroundProblem posing, the generation of questions by learners, has been shown to be an effective instructional strategy for teaching–learning of complex materials in domains such as mathematics. In this paper, we demonstrate the potential of problem posing in two dimensions. Firstly, we present how problem posing can result in unfolding of knowledge and hence how it can be used as an instructional strategy. Then we present another problem posing-based activity as an assessment tool in an Introductory Programming course (CS1).MethodTo explore the potential of problem posing as an instructional strategy, we conducted field studies in the two CS application courses (Data Structures (DS) and Artificial Intelligence (AI)), in which we provided a semi-structured problem posing situation to students. We performed inductive qualitative research and development the questions generated by students using grounded theory-based qualitative data analysis technique. To explore the potential of problem posing as an assessment tool, we conducted a field study in CS1 wherein we employed another problem posing (PP)-based activity in a large class for assessing the learning of computational thinking concepts in an introductory programming course and analysed how performance in traditional assessment tools (quiz score) is related with performance in our non-traditional assessment tool (quality of problems posed during a problem posing activity).ResultsFrom the studies in DS and AI courses we found that students pose questions and unfold knowledge using seven strategies — Apply, Organize, Probe, Compare, Connect, Vary, and Implement. From the field study performed in the CS1 course we found that the quality of the problems posed (difficulty level) were mostly aligned to the traditional assessment results in the case of novice learners but not in the case of advanced learners.