In the present research, the navigation of a flexible needle into the human liver in the context of the robotic-assisted intraoperative treatment of the liver tumors, is reported. Cosserat (micropolar) elasticity is applied to describe the interaction between the needle and the human liver. The theory incorporates the local rotation of points and the couple stress (a torque per unit area) as well as the force stress (force per unit area) representing the chiral features of the human liver. To predict the deformation of the needle and the liver, the elastic properties of the human liver have been evaluated. Outcomes reveal that considering smaller deformations of the needle and the liver results in better needle navigation mechanism. The needle geometry can enhance the penetration.