different types of genetic tests, these articles have been misleading due to conflation of very different attributes among the different types of genetic tests. An understanding of the differences between these tests allows one to stratify them according to the degree of scientific evidence supporting their utility, as well as the degree of risk they pose to public safety.It is in the interest of public safety that any test that is used to make medical decisions be accurate and FDA is justifiably concerned regarding the potential harm an inaccurate genetic test result could cause. The draft guidance outlining FDA's proposed regulatory framework for oversight of LDTs acknowledges that the risks posed by the wide varieties of LDTs varies greatly, and the proposed regulatory framework is based on the degree of risk that a particular LDT presents, i.e. a risk-based approach.1 This is a well-reasoned approach that is consistent with FDA's responsibilities to protect the public health while the regulatory framework is being developed and implemented, without denying access to this information to patients during this implementation period. While there are a wide range of risk levels associated within any of the classes of genetic tests, it is generally recognized that genetic tests that diagnose a disease or risk of disease, especially if the disease is potentially life-threatening, pose a greater risk to the public due to a false result because of the harmful actions that may be taken, or beneficial actions which may not be taken, based on the inaccurate test result (e.g. inaccurate ovarian cancer diagnosis leading to unneeded major medical procedures 2 misdiagnosis and lack of care in the case of a false negative result for HER2 breast cancer etc.).3 In contrast, genetic information that can help inform the patient (and healthcare provider) about their genetic predisposition for an array of drug metabolizing enzymes poses much less risk, as it does not result in unnecessary treatment, does not put the patient at risk of undergoing unnecessary medical treatment, or just as troubling, does not result in the patient not receiving treatment due to false negative misdiagnosis. These differences in the potential harm that can result from inaccurate test results makes pharmacogenetic tests much safer, from a public health standpoint, than the abovementioned genetic tests for cancer (disease) diagnosis.In an FDA assessment of any LDT, the potential benefit of the test must also be taken into account so that the relative risk or risk-benefit relationship can be considered in the context of current medical practice. The clinical benefit of pharmacogenetics is explicitly stated by FDA on its own website, where a list of pharmacogenetic markers that appear in the FDA-approved prescribing information of over 100 drugs is posted. 4 FDA provides information that suggests that adverse drug reactions are the 4th leading cause of death in the US, cost the nation billions of dollars annually, and that the majority of these adverse drug...