These findings replicate previous studies and demonstrate significantly improved depression outcomes with use of GeneSight, an integrated, multigenetic pharmacogenomic testing platform.
The objective of this study was to evaluate the potential benefit of utilizing a pharmacogenomic testing report to guide the selection and dosing of psychotropic medications in an outpatient psychiatric practice. The non-randomized, open label, prospective cohort study was conducted from September 2009 to July 2010. In the first cohort, depressed patients were treated without the benefit of pharmacogenomic testing (the unguided group). A DNA sample was obtained from patients in the unguided group, but the results were not shared with either the physicians or patients until the end of the 8-week study period. In the second cohort (the guided group), testing results were provided at the beginning of the 8-week treatment period. Depression ratings were collected at baseline and after 2 weeks, 4 weeks and 8 weeks of treatment using the Quick Inventory of Depressive Symptomatology, Clinician Rated (QIDS-C16) and the 17-item Hamilton Rating Scale for Depression (HAM-D17). Clinician and patient satisfaction was also assessed. The reduction in depressive symptoms achieved within the guided treatment group was greater than the reduction of depressive symptoms in the unguided treatment group using either the QIDS-C16 (P=0.002) or HAM-D17 (P=0.04). We concluded that a rapidly available pharmacogenomic interpretive report provided clinical guidance that was associated with improved clinical outcomes for depressed patients treated in an outpatient psychiatric clinic setting.
Antidepressants are among the most widely prescribed medications, yet only 35–45% of patients achieve remission following an initial antidepressant trial. The financial burden of treatment failures in direct treatment costs, disability claims, decreased productivity, and missed work may, in part, derive from a mismatch between optimal and actual prescribed medications. The present 1 year blinded and retrospective study evaluated eight direct or indirect health care utilization measures for 96 patients with a DSM-IV-TR diagnosis of depressive or anxiety disorder. The eight measures were evaluated in relation to an interpretive pharmacogenomic test and reporting system, designed to predict antidepressant responses based on DNA variations in cytochrome P450 genes (CYP2D6, CYP2C19, CYP2C9 and CYP1A2), the serotonin transporter gene (SLC6A4) and the serotonin 2A receptor gene (5HTR2A). All subjects had been prescribed at least one of 26 commonly prescribed antidepressant or antipsychotic medications. Subjects whose medication regimen included a medication identified by the gene-based interpretive report as most problematic for that patient and are in the ‘red bin' (medication status of ‘use with caution and frequent monitoring'), had 69% more total health care visits, 67% more general medical visits, greater than three-fold more medical absence days, and greater than four-fold more disability claims than subjects taking drugs categorized by the report as in the green bin (‘use as directed') or yellow bin (‘use with caution'). There were no correlations between the number of medications taken and any of the eight healthcare utilization measures. These results demonstrate that retrospective psychiatric pharmacogenomic testing can identify past inappropriate medication selection, which led to increased healthcare utilization and cost.
PGx testing provides significant 'real world' cost savings, while simultaneously improving adherence in a difficult to treat psychiatric population. Limitations of this study include the lack of therapeutic efficacy follow-up data and possible confounding due to matching only on demographic and psychiatric variables.
In four previous studies, a combinatorial multigene pharmacogenomic test (GeneSight) predicted those patients whose antidepressant treatment for major depressive disorder resulted in poorer efficacy and increased health-care resource utilizations. Here, we extended the analysis of clinical validity to the combined data from these studies. We also compared the outcome predictions of the combinatorial use of allelic variations in genes for four cytochrome P450 (CYP) enzymes (CYP2D6, CYP2C19, CYP2C9 and CYP1A2), the serotonin transporter (SLC6A4) and serotonin 2A receptor (HTR2A) with the outcome predictions for the very same subjects using traditional, single-gene analysis. Depression scores were measured at baseline and 8-10 weeks later for the 119 fully blinded subjects who received treatment as usual (TAU) with antidepressant standard of care, without the benefit of pharmacogenomic medication guidance. For another 96 TAU subjects, health-care utilizations were recorded in a 1-year, retrospective chart review. All subjects were genotyped after the clinical study period, and phenotype subgroups were created among those who had been prescribed a GeneSight panel medication that is a substrate for either CYP enzyme or serotonin effector protein. On the basis of medications prescribed for each subject at baseline, the combinatorial pharmacogenomic (CPGx™) GeneSight method categorized each subject into either a green ('use as directed'), yellow ('use with caution') or red category ('use with increased caution and with more frequent monitoring') phenotype, whereas the single-gene method categorized the same subjects with the traditional phenotype (for example, poor, intermediate, extensive or ultrarapid CYP metabolizer). The GeneSight combinatorial categorization approach discriminated and predicted poorer outcomes for red category patients prescribed medications metabolized by CYP2D6, CYP2C19 and CYP1A2 (P=0.0034, P=0.04 and P=0.03, respectively), whereas the single-gene phenotypes failed to discriminate patient outcomes. The GeneSight CPGx process also discriminated health-care utilization and disability claims for these same three CYP-defined medication subgroups. The CYP2C19 phenotype was the only single-gene approach to predict health-care outcomes. Multigenic combinatorial testing discriminates and predicts the poorer antidepressant outcomes and greater health-care utilizations by depressed subjects better than do phenotypes derived from single genes. This clinical validity is likely to contribute to the clinical utility reported for combinatorial pharmacogenomic decision support.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.