These findings replicate previous studies and demonstrate significantly improved depression outcomes with use of GeneSight, an integrated, multigenetic pharmacogenomic testing platform.
PGx testing provides significant 'real world' cost savings, while simultaneously improving adherence in a difficult to treat psychiatric population. Limitations of this study include the lack of therapeutic efficacy follow-up data and possible confounding due to matching only on demographic and psychiatric variables.
In four previous studies, a combinatorial multigene pharmacogenomic test (GeneSight) predicted those patients whose antidepressant treatment for major depressive disorder resulted in poorer efficacy and increased health-care resource utilizations. Here, we extended the analysis of clinical validity to the combined data from these studies. We also compared the outcome predictions of the combinatorial use of allelic variations in genes for four cytochrome P450 (CYP) enzymes (CYP2D6, CYP2C19, CYP2C9 and CYP1A2), the serotonin transporter (SLC6A4) and serotonin 2A receptor (HTR2A) with the outcome predictions for the very same subjects using traditional, single-gene analysis. Depression scores were measured at baseline and 8-10 weeks later for the 119 fully blinded subjects who received treatment as usual (TAU) with antidepressant standard of care, without the benefit of pharmacogenomic medication guidance. For another 96 TAU subjects, health-care utilizations were recorded in a 1-year, retrospective chart review. All subjects were genotyped after the clinical study period, and phenotype subgroups were created among those who had been prescribed a GeneSight panel medication that is a substrate for either CYP enzyme or serotonin effector protein. On the basis of medications prescribed for each subject at baseline, the combinatorial pharmacogenomic (CPGx™) GeneSight method categorized each subject into either a green ('use as directed'), yellow ('use with caution') or red category ('use with increased caution and with more frequent monitoring') phenotype, whereas the single-gene method categorized the same subjects with the traditional phenotype (for example, poor, intermediate, extensive or ultrarapid CYP metabolizer). The GeneSight combinatorial categorization approach discriminated and predicted poorer outcomes for red category patients prescribed medications metabolized by CYP2D6, CYP2C19 and CYP1A2 (P=0.0034, P=0.04 and P=0.03, respectively), whereas the single-gene phenotypes failed to discriminate patient outcomes. The GeneSight CPGx process also discriminated health-care utilization and disability claims for these same three CYP-defined medication subgroups. The CYP2C19 phenotype was the only single-gene approach to predict health-care outcomes. Multigenic combinatorial testing discriminates and predicts the poorer antidepressant outcomes and greater health-care utilizations by depressed subjects better than do phenotypes derived from single genes. This clinical validity is likely to contribute to the clinical utility reported for combinatorial pharmacogenomic decision support.
DNA of 258 patients with treatment-resistant depression was collected in three 8-10 week, two-arm, prospective clinical trials. Forty-four allelic variations were measured in genes for the cytochrome P450 (CYP) enzymes CYP2D6, CYPC19, and CYP1A2, the serotonin transporter (SLC6A4), and the 5-HT2A receptor (HTR2A). The combinatorial pharmacogenomic (CPGx™) GeneSight test results were provided to clinicians to support medication changes from baseline (guided arm), or they were provided at the end of each study to clinicians of unguided patients who were treated as usual (TAU). TAU subjects who at baseline were prescribed medications genetically discordant for them showed only a 12% symptom improvement, far less than the 32.5% or 28.5% improvements of the TAU subjects on yellow-category (‘use with caution'; p = 0.002) or green-category medications (‘use as recommended'; p = 0.02), respectively. The odds of a clinical response were increased 2.3-fold among all GeneSight-guided compared to all TAU subjects (p = 0.004), and overall, the guided group had a 53% greater improvement in depressive symptoms (p = 0.0002), a 1.7-fold relative improvement in response (p = 0.01), and a number needed to treat for one clinical response above that seen in the TAU group of 6.07.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.