Polarimetric radar provides more choices and advantages for quantitative precipitation estimation (QPE) than single-polarization radar. Utilizing the C-band polarimetric radar in Hangzhou, China, six radar QPE estimators based on the horizontal reflectivity (ZH), specific attenuation (AH), specific differential phase (KDP), and double parameters that further integrate the differential reflectivity (ZDR), namely, R(ZH, ZDR), R(KDP, ZDR), and R(AH, ZDR), are investigated for an extreme precipitation event that occurred in Eastern China on 1 June 2016. These radar QPE estimators are respectively evaluated and compared with a local rain gauge network and drop size distribution data observed by two disdrometers. The results show that (i) although R(AH, ZDR) underestimates in the light rain scenario, it performs the best among all radar QPE estimators according to the normalized mean error; (ii) the optimal radar rainfall relationship and consistency between radar measurements aloft and their surface counterparts are both required to obtain accurate rainfall estimates close to the ground. The contamination from melting layer on AH and KDP can make R(AH), R(AH, ZDR), R(KDP), and R(KDP, ZDR) less effective than R(ZH) and R(ZH,ZDR). Instead, adjustments of the α coefficient can partly reduce such impact and hence render a superior AH–based rainfall estimator; (iii) each radar QPE estimator may outperform others during some time intervals featured by particular rainfall characteristics, but they all tend to underestimate rainfall if radar fails to capture the rapid development of rainstorms.