The development and validation of detailed simulation models of incylinder combustion, emission formation mechanisms and reaction kinetics in the exhaust system are of crucial importance for the design of future low-emission powertrain concepts. To investigate emission formation mechanisms on one side and to create a solid basis for the validation of simulation methodologies (e.g. 3D-CFD, multidimensional in-cylinder models, etc.) on the other side, specific detailed measurements in the exhaust system are required. In particular, the hydrocarbon (HC) emissions are difficult to be investigated in simulation and experimentally, due to their complex composition and their post-oxidation in the exhaust system.In this work, different emission measurement devices were used to track the emission level and composition at different distances from the cylinder along the exhaust manifold, from the exhaust valve onwards. A fast-FID (FFID) was used to measure the cycle-resolved total-HC (THC) emissions and an ion molecule reaction massspectrometer (IMR-MS) to determine the average concentration of some selected HC components. Conventional exhaust analyzers were used additionally to measure the average levels of the important exhaust gas components (THC, NOx, CO, CO2, O2).The measurements were conducted on a 0.4 l single-cylinder sparkignited (SI) research engine. The effects and cross-effects on emissions of several relevant operating parameters were evaluated. Different result patterns are observed in the different measuring positions. In this work, selected results on the effect of air-to-fuel ratio and spark timing are presented. For the air-fuel-ratio variation, the FFID results show that the THC quenching increases with lean operating condition and the IMR-MS that this increase corresponds to an increase in fuel-HC and a reduction in non-fuel-HC. In the spark timing variation, the trends of THC in the exhaust port and in the exhaust runner suggest the presence of HC oxidation in the exhaust port, due to higher exhaust temperature with retarded combustion. Additionally, the IMR-MS confirm the presence of late and incomplete oxidation with the increase of non-fuel species.