LC is one of the most powerful separation techniques as illustrated by its leading role in analytical sciences through both academic and industrial communities. Its implementation in microsystems appears to be crucial in the development of mu-Total Analysis System. If electrophoretic techniques have been widely used in miniaturized devices, LC has faced multiple challenges in the downsizing process. During the past 5 years, significant breakthroughs have been achieved in this research area, in both conception and use of LC on chip. This review emphasizes the development of novel stationary phases and their implementation in microchannels. Recent instrumental advances are also presented, highlighting the various driving forces (pressure, electrical field) that have been selected and their respective ranges of applications.