Abstract:Neural networks are vulnerable to a wide range of erroneous inputs such as adversarial, corrupted, out-of-distribution, and misclassified examples. In this work, we train a linear SVM classifier to detect these four types of erroneous data using hidden and softmax feature vectors of pre-trained neural networks. Our results indicate that these faulty data types generally exhibit linearly separable activation properties from correct examples, giving us the ability to reject bad inputs with no extra training or o… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.