aligned when my partner Phoebe got a job here in Fort Collins, enabling me to move here and immerse myself in the program. Although it has been a strange year with coronavirus, I've really enjoyed it. I'm very grateful for the opportunity Professor Blanchard gave me; I've learned a ton and really grown as a person.
The Multi-Prize Lottery Ticket Hypothesis posits that randomly initialized neural networks contain several subnetworks that achieve comparable accuracy to fully trained models of the same architecture. However, current methods require that the network is sufficiently overparameterized. In this work, we propose a modification to two stateof-the-art algorithms (Edge-Popup and Biprop) that finds high-accuracy subnetworks with no additional storage cost or scaling. The algorithm, Iterative Weight Recycling, identifies subsets of important weights within a randomly initialized network for intra-layer reuse. Empirically we show improvements on smaller network architectures and higher prune rates, finding that model sparsity can be increased through the "recycling" of existing weights. In addition to Iterative Weight Recycling, we complement the Multi-Prize Lottery Ticket Hypothesis with a reciprocal finding: high-accuracy, randomly initialized subnetwork's produce diverse masks, despite being generated with the same hyperparameter's and pruning strategy. We explore the landscapes of these masks, which show high variability.
Neural networks are vulnerable to a wide range of erroneous inputs such as adversarial, corrupted, out-of-distribution, and misclassified examples. In this work, we train a linear SVM classifier to detect these four types of erroneous data using hidden and softmax feature vectors of pre-trained neural networks. Our results indicate that these faulty data types generally exhibit linearly separable activation properties from correct examples, giving us the ability to reject bad inputs with no extra training or overhead. We experimentally validate our findings across a diverse range of datasets, domains, pre-trained models, and adversarial attacks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.