In this work, edged plane pyrolytic graphite electrode EPPGE was modified with functionalised single-walled carbon nanotubes and Prussian blue nanoparticles (PB). The modified electrode was characterised by techniques such as TEM, FTIR, XPS, EDX and cyclic voltammetry. The EPPGE-SWCNT-PB platform exhibited enhanced electron transport and catalytic efficiency towards the oxidation of Diethylaminoethanethiol (DEAET) and hydrazine compared with the other electrodes studied. The EPPGE-SWCNT-PB showed good electrochemical stability in the analytical solution, showing limit of detection in the micromolar range and catalytic rate constant of 3.71 10 6 and 7.56 10 6 cm 3 mol À1 s À1 for DEAET and hydrazine respectively. The adsorption properties of these analytes that impact on their detection at the SWCNT-PB film modified electrode were evaluated and discussed.