Despite the success of vaccines in preventing many infectious diseases, effective vaccines against pathogens with ongoing challenges -such as HIV, malaria, and tuberculosis -remain unavailable. The emergence of new pathogen variants, the continued prevalence of existing pathogens, and the resurgence of yet other infectious agents motivate the need for new, interdisciplinary approaches to direct immune responses. Many current and candidate vaccines, for example, are poorly immunogenic, provide only transient protection, or create risks of regaining pathogenicity in certain immune-compromised conditions. Recent advances in biomaterials research are creating new potential to overcome these challenges through improved formulation, delivery, and control of immune signaling. At the same time, many of these materials systems -such as polymers, lipids, and self-assembly technologies -may achieve this goal while maintaining favorable safety profiles. This review highlights ways in which biomaterials can advance existing vaccines to safer, more efficacious technologies, and support new vaccines for pathogens that do not yet have vaccines. Biomaterials that have not yet been applied to vaccines for infectious disease are also discussed, and their potential in this area is highlighted