Grapevine is one of the world’s most economically important fruit crops. It is known that Vitis vinifera is a host for a large number of pathogenic agents, which significantly reduce the yield and berry quality. This forces the agronomists to use a huge amount of fungicides. Over the last few decades, alternative methods for solving this problem have been developed and continue to be developed. Such new technologies as marker-assisted selection, bioengineering of the rhizosphere, genetic engineering (transgenesis, cisgenesis and intragenesis) allow the production of pathogen-resistant cultivars. However, they are linked to a number of problems. One of the most promising methods is the creation of modified non-transgenic cultivars via CRISPR/Cas9-targeted mutagenesis. Therefore, researchers are actively looking for target genes associated with pathogen resistance and susceptibility. This review elucidates the main mechanisms of plant—pathogen interactions, the immune systems developed by plants, as well as the identified genes for resistance and susceptibility to the biotrophic pathogen Erysiphe necator and the necrotrophic pathogen Botrytis cinerea.