Aim of the present work was to develop alginate-pectin rafts by using box behnken design to provide symptomatic relief from gastroesophageal reflux disorders by forming floating gel or raft on the top of gastric contents. Sodium alginate and pectin were used as raft-forming polymers, sodium bicarbonate as gas-generating substance, and calcium carbonate for generation of calcium ions. Physical test of all compressed formulations were within pharmacopoeial limits. Effect of pH of medium on raft formation was observed by placing the formulation in different pH mediums. Raft was characterized by their strength, weight, volume, resilience, reflux resistance, thickness, buffering capacity, neutralizing capacity, floating lag time (FLT) and total floating time (TFT). Fourier transform infrared (FTIR) spectroscopy was performed to check the interaction between the polymers and other excipients.Raft was effectively formed at pH 1.2. Raft strength, reflux resistance, and thickness of optimized formulation APR15 were 9.71 ± 0.013 g, 2670 ± 0.987 g, and 5.1 ± 0.045 cm, respectively. Raft resilience for the APR15 was found to be greater than 480 min. TFT of APR15 was greater than 8 hr with 50 s FLT. Buffering and neutralizing capacity were 12.70 ± 1.21 meq and 7.0 ± 0.34 meq, respectively. FTIR spectra showed no interactions between sodium alginate, pectin, and other excipients. This study demonstrated that alginate-pectin rafts are suitable for the treatment of gastro-esophageal reflux disorders.
K E Y W O R D Sbox behnken design, pectin, raft, sodium alginate