Vegetation dynamics of three forest communities were studied by resampling of relevés recorded in the 1970s in the Bohemian Forest (Š umava Mountains). Results of multivariate analysis (RDA) confirmed significant time changes in species composition of the climax (Calamagrostio-Piceetum) and waterlogged (Bazzanio-Piceetum) spruce forests. The changes in the sphagnum-rich waterlogged spruce forests (Sphagno-Piceetum) are close to the level of significance. The main vegetation changes are represented by a decrease in cover and/or frequency of hygrophilous or sciophilous species (e.g. Athyrium distentifolium, Oxalis acetosella) in climax spruce forests, and an abundant increase of species, indicating a preference to drier stands or better light conditions (e.g. Calamagrostis villosa, Vaccinium vitis-idaea or Avenella flexuosa), in waterlogged spruce forests. We also found a higher proportion of meadow species (e.g. Anthoxanthum odoratum, Festuca rubra or Luzula multiflora) in the newly recorded relevés from waterlogged forests. Analysis of species number per plot showed a remarkable shift to species-rich communities, especially in waterlogged stands. We tried to find the possible factors responsible for the observed changes. Unfortunately, only indirect measurement of environmental factors using Ellenberg's indicator values could be used and did not yield sufficient results. Thus, the changes observed in climax spruce forests were ascribed mainly to a decrease in canopy cover, which was directly estimated. In waterlogged forests, a complex of several general factors, which influence the climax spruce forest, had to be taken into account, such as: (i) a decrease in atmospheric acidification during the last 10-15 years and subsequent improvement in soil conditions, especially in waterlogged stands; (ii) fragmentation of forests as a result of bark-beetles attack; (iii) climate warming documented by long-term local meteorological measurements. #